Student Project: Physics of Semiconductor Devices

Exam Question: Effective mass - Exam October 2011

Q: In a semiconductor where the bottom of the conduction band is at \(k = 0 \), an electron moves with a wave-number \(k = 10^9 \text{m}^{-1} \).

- If the effective mass of electrons in the conduction band is \(0.5 \cdot m_e \), what is the energy of this electron measured from the bottom of the conduction band?

- Electrons in the conduction band will occupy some states up until about \(k_B T \) above the bottom of the conduction band. What is the maximum value of \(k \) that electrons would have from thermal fluctuations at room temperature? What consequences does this have for a light emitting diode?

A: The energy-wavenumber, also called dispersion, relation in the vicinity of the bottom of the conduction band can be approximated by the free electron model. Which means that the energy has just a quadratic dependence on the wavenumber. For the one dimensional case it reads as:

\[
E = \frac{\hbar^2}{2m^*} k^2. \tag{1}
\]

Where the mass \(m \) has been replaced by the so called effective mass \(m^* \). It is determined by the by the curvature of the bottom of the conduction band:

\[
m^* = \frac{\hbar^2}{2E(k)} \tag{2}
\]

This effective mass approximately includes the otherwise ignored influence of the lattice potential caused by the atomic nuclei.

For a \(k \)-value of \(k = 10^9 \text{m}^{-1} \) and an effective mass of \(0.5 \cdot m_e \) this yields an energy of \(E = 0.0762 \text{eV} \).

Further physical constants needed for the calculation:

- reduced Planck constant \(\hbar = 1.05457 \cdot 10^{-34} \text{J} \cdot \text{s} \)
- electron mass \(m_e = 9.1094 \cdot 10^{-31} \text{kg} \)
- electron charge \(e = 1.602 \cdot 10^{-19} \text{C} \)

For the second question one inverts equation (1) to calculate the wave-number corresponding to \(E_{th} = k_B T = 0.0253 \text{eV} \) at a room-temperature of \(T = 292 \text{K} \),

\[
k = \sqrt{\frac{2m^*}{\hbar^2}E}. \tag{3}
\]

So at room temperature states up to \(k_{th} = 5.76 \cdot 10^8 \text{m}^{-1} \) are occupied, see fig.(1).

Consequences for a light emitting diode:

At temperature \(T = 0 \text{K} \) a light emitting diode would only emit light with a frequency exactly corresponding to the band-gap energy \(h\nu = E_g \), but as a consequence of these thermal fluctuations the spectral width of the emitted light broadens. The uncertainty of the frequency of the emitted light at room temperature is \(\Delta \nu = k_B T / h = 2.41 \cdot 10^{14} \text{Hz} \). Or in term of wavelengths \(\Delta \lambda = 1.24 \cdot 10^{-6} \text{m} = 124 \text{nm} \), see fig.(2)
Figure 1: Energy as function of wave-number in the free electron approximation.

Figure 2: Broadening of the spectral width of a LED due to thermal fluctuations.
Source: http://spie.org/x32442.xml